Tensegrity and mechanotransduction.
نویسنده
چکیده
Anyone who is skilled in the art of physical therapy knows that the mechanical properties, behavior and movement of our bodies are as important for human health as chemicals and genes. However, only recently have scientists and physicians begun to appreciate the key role which mechanical forces play in biological control at the molecular and cellular levels. This article provides a brief overview of a lecture presented at the First International Fascia Research Congress that convened at Harvard Medical School in Boston, MA on October 4, 2007. In this lecture, I described what we have learned over the past 30 years as a result of our research focused on the molecular mechanisms by which cells sense mechanical forces and convert them into changes in intracellular biochemistry and gene expression-a process called "mechanotransduction". This work has revealed that molecules, cells, tissues, organs, and our entire bodies use "tensegrity" architecture to mechanically stabilize their shape, and to seamlessly integrate structure and function at all size scales. Through the use of this tension-dependent building system, mechanical forces applied at the macroscale produce changes in biochemistry and gene expression within individual living cells. This structure-based system provides a mechanistic basis to explain how application of physical therapies might influence cell and tissue physiology.
منابع مشابه
Tensegrity: the architectural basis of cellular mechanotransduction.
Physical forces of gravity, hemodynamic stresses, and movement play a critical role in tissue development. Yet, little is known about how cells convert these mechanical signals into a chemical response. This review attempts to place the potential molecular mediators of mechanotransduction (e.g. stretch-sensitive ion channels, signaling molecules, cytoskeleton, integrins) within the context of t...
متن کاملSelf-assembly of 3D prestressed tensegrity structures from DNA
Tensegrity, or tensional integrity, is a property of a structure indicating a reliance on a balance between components that are either in pure compression or pure tension for stability. Tensegrity structures exhibit extremely high strength-to-weight ratios and great resilience, and are therefore widely used in engineering, robotics and architecture. Here, we report nanoscale, prestressed, three...
متن کاملCellular basis of mechanotransduction.
Physical forces, such as those due to gravity, are fundamental regulators of tissue development. To influence morphogenesis, mechanical forces must alter growth and function. Yet little is known about how cells convert mechanical signals into a chemical response. This presentation attempts to place the potential molecular mediators of mechanotransduction within the context of the structural com...
متن کاملTensegrity-based mechanosensing from macro to micro.
This article is a summary of a lecture on cellular mechanotransduction that was presented at a symposium on "Cardiac Mechano-Electric Feedback and Arrhythmias" that convened at Oxford, England in April 2007. Although critical mechanosensitive molecules and cellular components, such as integrins, stretch-activated ion channels, and cytoskeletal filaments, have been shown to contribute to the res...
متن کاملTensegrity II. How structural networks influence cellular information processing networks.
The major challenge in biology today is biocomplexity: the need to explain how cell and tissue behaviors emerge from collective interactions within complex molecular networks. Part I of this two-part article, described a mechanical model of cell structure based on tensegrity architecture that explains how the mechanical behavior of the cell emerges from physical interactions among the different...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bodywork and movement therapies
دوره 12 3 شماره
صفحات -
تاریخ انتشار 2008